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Buckling of Axisymmetric Imperfect

Circular Cylindrical Shells under Axial Compression

R. C. TeEnNysoN* aND D. B. MUuGGERIDGET
Unaversity of Toronto, Toronto, Ontario, Canada

Circular eylindrical shells containing axisymmetric imperfections in shape described by a
simple trigonometric function have been tested under axial compressive loading. Various
values of imperfection amplitude and wavelength were considered and the results compared
with Koiter’s extended theory. Numerical calculations were also made using an exact model
formulation including the effects of end constraint and cylinder geometry. For each shell
configuration analysed, the exact model results agreed with Koiter’s extended theory within a
few percent. In general, theory and experiment agreed within 109,. It was also observed
that a eritical axisymmetric wavelength existed which yielded a minimum buckling load for a
given value of imperfection amplitude, consistent with the predictions of Koiter’s extended
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theory. Only in the limiting case of imperfection amplitude approaching zero does the
critical wavelength correspond to the classical axisymmetric buckling mode of a perfect shell.

Nomenclature

b = (4o* + 1)/(4p* + 1 — 40p?)

¢ = [3(1 — »2)]¥/2

E = modulus of elasticity

F = Airy stress function P

F = 2cF/Ep

h = t/t

K = P/

L = shell length

Iz = L/m = =R/2p, axial half-wave length

myn = number of half-waves and waves in the axial and
circumferential directions, respectively

—N = applied compressive load per unit length

P = mwR/2L

Qo = (R/Y2[12(1 — »2)]Y4 the classical axisymmetric
buckling mode wave number

R = shell radius measured to median surface

t = shell wall thickness

i = average shell wall thickness

4,5, = displacements measured in the axial, circumferential
and radial directions, respectively

wupw = B/t 5/1, w/1, respectively

@(x) = (—8/2%) cos(wx/Ix), deviation of median surface

x,7 = axial and eircumferential coordinates, respectively

z,y = %/L, §/L, respectively

A = L1 — »*)Y2/R}

B8 = nL/R

8 = peak axisymmetric imperfection amplitude

MAE N = 01/00l, Oar/ e, 0¢/Te), Tespectively

u = maximum deviation of median surface/average shell
wall thickness

v = Poisson’s ratio

P = p(/Re)1*

o = Et/Re, classical compressive buckling stress for a per-
fect circular eylindrical shell

ok = cylinder buckling stress corresponding to Koiter’s
extended theory

Oor = critical cylinder buckling stress observed experi-
mentally

ge = cylinder buckling stress as computed from exact
model formulation

T = n(t/Rc)Y?

Subscripts

avg = average

cl = classical

Received April 4, 1969. The authors wish to acknowledge the
financial assistance of the National Research Council of Canada
(Grant A-2783) and of NASA [Grant NGR 52-026-(011), Sup-
plement 1] which made this research possible. The numerical
computations were supported by NASA Grant NGL 22-007-012
with Harvard University.

* Associate Professor, Institute for Aerospace Studies. Mem-~
ber ATAA.

1 Research Assistant, Institute for Aerospace Studies.

er = critical

e = refers to exact model theory

k= refers to Koiter’s theory

0 = prebuckling axisymmetric solution

I. Introduction

T is now generally recognized that imperfections in shape
play the dominant role in reducing the buckling load of a
circular cylindrical shell under axial compressive loading.
In previous work Tennyson! has shown that geometrically
“near-perfect’” circular cylinders buckle within a few percent
of the reduced classical value taking into account the effect
of end constraints. Due to the prebuckling deformations in-
troduced by the boundary conditions, the edge constraint can
also be regarded as a particular type of axisymmetric imper-
fection. However, in most cases of practical interest, clamped
edge support is usually present and the load reduction based
on the classical value is nominally 9 ~ 109%,.

Theoretical analyses?~7 of the effect of imperfections on the
buckling behavior of cylinders have clearly demonstrated that
relatively small imperfection amplitudes can drastically re-
duce the critical load of the shell. Despite the substantial
theory available, few experimental data®—1 exist describ-
ing the effects of specific imperfections in shape in reducing
the static buckling load. Consequently, it was of particular
interest to determine the buckling load reduction caused by
an initial axisymmetric imperfection in shape defined by a
simple trigonometric function.?* In his “special theory,”?
which was formulated neglecting end constraints, Koiter
verified the asymptotic relationship presented earlier in his
more “general theory”? for the limiting case of the axisym-
metric imperfection amplitude approaching zero. Moreover;
Koiter was able to derive an equation that predicted the ef-
fects of finite imperfections on the buckling load for wave-
lengths equal to the classical axisymmetric buckling mode of
a perfect shell.

This paper describes an investigation of the influence of
axisymmetric imperfection profiles of varying wavelength
and amplitude on the buckling behavior of eircular eylindrical
shells subjected to axial compression. Using Koitet’s theory,?
it was possible to extend his analysis for arbitrary values of
imperfection wavelength and amplitude, the results of which
are contained in this paper. In order to test Koiter’s ex-
tended theory, photoelastic plastic circular eylindrical shells
containing an axisymmetric imperfection in shape were
manufactured by the spin-casting technique! and subjected to
axial compression. For comparison purposes, numerical
buckling load calculations were performed by Hutchinson!!
based on an exact analytical model in which the effects of a
clamped end constraint and the specific geometrical con-
figuration of the e¢ylinders were taken into account.
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Fig. 1 Buckling load ratio vs axisymmetric imperfection
amplitude for varying values of axial wave number.

II. Basic Equations

Koiter’s Extended Theory

The problem of determining the effect of axisymmetric im-
perfections in shape on the buckling behavior of a circular
cylindrical shell subjected to axial compression was first
analysed by Koiter.? In his general theory, Koiter con-
sidered an imperfection wavelength equal to the classical
axisymmetric buckling mode (in terms of the wave number
used in this paper, this corresponds to K = ) and an asymp-
totic solution was obtained for small values of the imperfec-
tion amplitude p. Subsequently, Koiter formulated a special
theory? and derived a first approximation to the critical
buckling load solution for finite values of the imperfection
amplitude which, for K = % and u — 0, verified the results of
his former general theory. In each case, a constant thickness
cylinder containing an initial axisymmetric imperfection pro-
file having the form @w(Z) = —ut cos(2pz/R) was assumed,
and the prebuckling deformations due to edge constraint
were neglected. From Koiter’'s special theory using a
Galerkin procedure, an upper bound to the critical buckling
load parameter A can be found from the following eigen value
equation:

(p* + 7 + 4p%(p* + 727 — 4Np®* — 2cu7?(b —
1+ 8bp*(p? + 79)72] + 16(cu)*bp*r*[(0* +
™ @t 7 = 0 (1)
where p is a nondimensional axial wave number and 7 is a free
parameter associated with the asymmetrie bifurcation mode.
Koiter solved Eq. (1) for the particular case when p? = 3,
which corresponds to the axisymmetric imperfection wave-

length equal to the classical axisymmetric buckling mode of
the perfect circular cylindrical shell, that is,

2p = qo = [12(1 — »y)JV4(R/H)M* @
As noted by Koiter,® Eq. (1) ean also be solved for various

values of the imperfection wavelength and amplitude. Con-
sequently, using the following definitions:

p = Kg 3
p* = 2K*? €Y
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Eqg. (1) can be rewritten in the form
AN+ AN+ AN+ A= 0 (5)
where
Ay = —512K°Q2
A, = 64K4Q* + 1024K® + 128K*BQ? + 128cur2K*Q?
A; = —16K?BQ* — 256K°B — 8K2Q?B? —
16cur2K2Q2B + 512cu7KSB
4, = Q*B* 4+ 16K*B? — 64curt*K*B? + ®)
64(cu)2KQ*r*B2H
Q =2K*+4 7% B=16K*+41

H = 1/Q* + 1/(18K? + 72)2

Thus, for given values of K and g, a minimum value of A
can be determined from Eq. (5) by varying the circumferen-
tial wave number parameter 7. Figures 1 and 2 show the
solutions obtained for 0 < u < 0.1 and 0 < p < 1.0, respec-
tively (taking » = 0.4 as is appropriate for the shells tested).
The envelope defining the lower bound of minimum A vs
u for all values of K is plotted in Fig. 3, which lies somewhat
lower than Koiter’s results® for K = . Only as u — 0 (i.e.,
the asymptotic solution) does K = % yield the minimum
buckling load as demonstrated in Fig. 4. It is quite clear
from the analysis that the critical imperfection wavelength
leading to a minimum buckling load increases for increasing
values of the imperfection amplitude. This analysis is limited,
however, by the conditions on the wave numbers (m, n must
be large) and by the initial buckling mode assumed by
Koiter.?

Exact Model Formulation}

Because of the technique used to fabricate the photoelastic
plastic test cylinders, the imperfection was cut only on the in-
side wall of the shell, thus resulting in axisymmetric thickness
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Fig. 2 Buckling load ratio vs axisymmetric imperfection
amplitude for varying values of axial wave number.

1 The authors wish to acknowledge gratefully that this analysis
was performed for comparison purposes by J. W. Hutchinson,
Harvard University.
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and median surface profiles given by (refer to Fig. 5)

t(z) = I[1 + (8/1) cos(mz/lz)]
™
W(T) = —(8/2) cos(mwZ/lz)

Hence, it was necessary to determine the extent to which the
thickness variation in combination with the prebuckling de-
formations due to the elamped end constraint would reduce
the buckling load estimates based on Koiter’s extended
theory. The following nondimensional form§ of the equilib-
rium and compatibility equations was derived by Hutchin-
sontl:

P2 W,er + vw,00) 122 + B (Wpanyy + VW0,0000) +
2(1 — ») (AW ayy),» + 2(8)V2ZF,,, =
20[Fuy(Wy20 + Wyaz) + Frzabyyy — 2F,0gW,2y]  (8)
(1/h>(wazm - VF,zzyu) + [(1/h)(F;1x - VF;le)]zII +
200 + VIA/RF ayulye — 23) V20,20 =
26[= w5y (Wyex + Byos) + W,z (9)

When 2 = const, Egs. (8) and (9) reduce to those used by
Koiter.?

« The prebuckling axisymmetric solution can be obtained
from Egs. (8) and (9), noting that Fo,,y = —N,

(hswo;zz),xz + 2<3)1/2ZF0;3:1 + 2CN(U)0,ZJ; + 1’[),1;5) =0 (10)
[(1/h)F0)zr];zx - 2(3)1/2Z'w072-’v + VN(l/h);zz =0 (11)

For the clamped end constraint appropriate to the cylinder
configuration being studied, the following boundary condi-
tions are applicable:

v = Wy = Wy = 0atz = 0,1
u =0atz =20 12)
up = up(N) at x = 1
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Fig. 3 Envelope of minimum buckling load ratie vs
axisymmetric imperfection amplitude.

§ Subseripts following a comma indicate differentiation with re-
spect to the variables shown.
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Fig. 4 Buckling load ratio vs axial wave number for vary-
ing values of axisymmetric imperfection amplitude.

Hence, Eq. (11) yields
Fo,ee = —»N -+ 2(3)Y2Zhwy (13)
which, when substituted into Eq. (10), gives
(BPwo,2s) 22 + 26N (Woyze + W,22) + 1222wy —
2(3)12ZyN = 0 (14)

The solution of Eqs. (13) and (14) yields the prebuckling
values Fo, wy necessary for the complete buckling solution of
Eqs. (8) and (9). It is assumed that the form of F and w
which will satisfy the equilibrium and compatibility equa-
tions at the inception of buckling is given by

w = W -+ ew

(15)
F = Fo + €F1
where
w, = wi(x) cosPy
(16)
Fy = Fy(x) cosBy

Substituting Eqgs. (15) and (16) into Eqgs. (8) and (9) and

w(x) 3 ux
=7 k-3 X
HX)=1 [l*?cos"';—]
MEDIAN SURFACE G(i)h-g—cos'{%
/ /~OUTER SURFACE *
i V /
2 3 - —~
i e e T B T
H I - - == - R
2j4 3 N N .74:.\
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Fig. 5 Circular cylinder with axisymmetric shape imper-
fection.
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Fig. 6 Apparatus for measuring shell wall profile.

retaining only first-order terms in e gives
[hs(wlyzx - V62w1)];zx + R3(BUw, — Vﬁzwhxz) -
2(1 — »)B2(h*wrye),0 + 2(3)V2ZF 1,00 +
2eNW1,z0 = 2¢[— BF1(Woyz0 + Wyae) — BwiFo,ex)  (17)
1/h(B*F1 + vB°F12) + [1/h(Frez + v8%¥F1))ee — 2(1 +
V)B2[1/hF1,z).e — 2(3) V22100 = 26821 (Wo,20 + Wrza)  (18)

with the appropriate boundary conditions at the shell ends
defined by

w=uv=w=w,,=0 atzr=01 19)

Equations (13, 14, 17, and 18) were solved numerically by
Hutchinson,!! and the results are discussed later in conjunc-
tion with the experimental data. Illustrations of the numeri-
cal technique employed to solve these equations can be
found in Ref. 13.

III. Experiment—Fabrication
and Test Procedure

In the experimental programs conducted to date, all circu-
lar eylindrieal shells have been manufactured from a photo-
elastic plastic using the spin-casting technique.* Initially, a
geometrically near-perfect shell was cast and the inner wall

L 1725 o

/ A

L V o

Fig. 7a) Profile of the median surface on a near-perfect
circular cylindrical shell containing random imperfections.

Fig. 7b) Profile of the median surface of a circular cylin-
drical shell containing axisymmetric imperfections in
shape.
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machined to a prescribed profile. In order to construct the
axisymmetric imperfection wave form, a metal template con-
taining the desired wavelength and amplitude was used in
conjunction with a hydraulic tracer-tool apparatus. By
cutting the imperfection profile only on the inner surface, the

. shell was easily separated from the casting form. After re-

moving the cylinder, thickness measurements were made at
discrete points around the circumference at both ends.
Machined aluminum end plates were then attached to the
test eylinder to provide the clamped edge restraint. Each
shell was subsequently positioned in a rotation apparatus, as
shown in Fig. 6, and the inner, outer, and median sutface
profiles were determined using low-pressure, linear contacting
displacement transducers with their outputs recorded on an
2~y plotter. Figure 7a illustrates median surface profiles ob-
tained from a geometrically near-perfect shell and Fig. 7b
illustrates profiles from a shell containing the axisymmetrie
imperfection in shape. Although a contact measuring system
does not represent the optimum technique, it was deemed
acceptable particularly for the shell wall thicknesses involved
and the very low spring stiffness of each probe. The measured
thicknesses at the shell ends served as a reference for deter-
mining absolute variations along each generator.

The final stage of the test procedure involved the proper
alignment of the cylinder in an electrically driven, four-screw
compression machine. Uniformity of the applied stress was
easily checked by examining photoelastically the membrane
stress distribution around the circumference of the cylinder
and finally, by noting the postbuckled configuration of the
cylinder. Complete circumferential buckling centrally lo-
cated in the shell attested to the uniformity of the load dis-
tribution. Since each shell buckled elastically and repeatedly
at the same load, it was possible to employ high-speed framing
photography to analyse the inception of buckling using the
method of isoclinics.’2 Although some results are available,
they will not be included in this paper.

To serve as reference shells, two geometrically near-per-
fect cylinders were tested in axial compression to determine
the modulus of elasticity of the epoxy plastic used in each test
series, and, at the same time, to provide a measure of the load

Table 1 Properties of axisymmetric imperfect shells

R, Z, L, 3, lz, E X

in. in. in. in. in. 105, psi AF¥
2.65 0.0168 8.0 4.04 0.924
2.65 0.0127 7.4 0.0022 0.370 4.04 0.569
2.65 0.0192 7.4 0.0021 0.370 4.04 0.606
2.65 0.0242 7.4 0.0021 0.370 4.04 0.667
3.92 0.0179 11.0 3.94 0.919
3.92 0.0174 11.0 0.0024 0.393 3.94 0.632
3.92 0.0140 11.0 0.0024 0.343 3.94 0.576
3.92 0.0208 11.0 0.0023 0.343 3.94 0.764
3.92 0.0211 10.4 0.0023 1.378 3.94 0.797
3.91 0.0244 11.1 0.0011 0.462 3.94 0.786
3.92 0.0188 11.0 0.0024 0.243 3.94 0.824
v = 0.40
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reduction due to the clamped end constraint common to each
shell. In total, nine cylinders of varying imperfection wave-
length and amplitude were studied (refer to Table 1), the re-
sults of which are discussed in the next section.

IV. Discussion of Experimental Results

A comparison of the shell buckling data with Koiter’s
extended theory and the results of the exact model analysis
are contained in Figs. 8 and 9, respectively. In each case, the
experimental data are within 109, of the predicted values.
The remarkable feature of the comparison between Koiter’s
simple model and the exact formulation is that for the range of
imperfection amplitude and axial wave number parameters
considered, no significant difference exists between the critical
loads. Hence, it appears that the load reduction due to initial
shape imperfections is the dominant factor completely over-
whelming the effects of thickness variation and end con-
straint.

To determine the effect of imperfection amplitude on the
critical buckling load, three shells were tested having nomi-
nally the same axial wave number parameter (K., = 0.592)
and varying values of imperfection amplitude. The results
are shown in Fig. 10 and a comparison is made with both
Koiter’s extended theory and the exact model calculations.
It was also of interest to determine if a critical axisymmetric
imperfection wavelength existed which would yield a mini-
mum buckling load for a given value of imperfection ampli-
tude. Again, three shells were tested having nominally the
same imperfection amplitude parameter (=~0.054) and vary-
ing values of the axial wave number parameter K. As shown
in Fig. 11, a critical value of K does indeed exist at which a
minimum buckling load is observed, consistent with the re-
sults of Koiter’s extended theory. It should be noted that in
Koiter’s original analysis,® only as u — 0 does this critical
value of K approach 4. For finite values of imperfection, the
critical value of K must be determined from the extended
analysis. The exact model results are also shown in Fig. 11
for comparison purposes and again it is noted that the dif-
ference between Koiter’s extended theory and experiment is
small over the range plotted.
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Fig. 10 Critical shell buckling load ratio vs (axisymmetrie
imperfection amplitude/average shell wall thickness) for a
particular value of imperfection wave number.

imperfection wave number for a particular value of
imperfection amplitude.

V. Conclusions

The experimental results achieved to date constitute the
first verification of Koiter's imperfection theory which was
extended to include buckling load solutions for a wide range of
axisymmetric imperfection wavelengths. In all cases, experi-
mental results and theory agree within 109,. Although it is
somewhat surprising that the exact model calculations do not
yield critical buckling loads significantly lower than the pre-
dictions of Koiter’s theory, it is concluded that for the range
of parameters considered, the effects of a clamped edge con-
straint in combination with an arbitrary thickness variation
can be neglected, and that very small shape imperfections
drastically reduce the buckling load of a circular cylindrical
shell in axial compression.
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